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ABSTRACT: 

The ROC curve is a graphical method that 

summarizes how well a binary classifier can 

discriminate between two populations, often called 

the "negative" population (individuals who do not 

have a disease or characteristic) and the "positive" 

population (individuals who do have it). There is a 

theoretical model, called the bi-normal model that 

describes the fundamental features in binary 

classification. The model assumes a set of scores 

that are normally distributed for each population, 

and the mean of the scores for the negative 

population is less than the mean of scores for the 

positive population.  

KEYWORDS:  ROC curve, Bi-normal Curve 

 

I. RECEIVER OPERATING 

CHARACTERISTIC (ROC) CURVE 
The word ROC analysis had its origin in 

Statistical Decision Theory as well as in Signal 

Detection Theory (SDT) and was used during II 

World War for the analysis of radar images (Green 

and Swets (1966), Bamber (1975), Egan(1975)).   

In these studies, the objective is mainly to 

distinguish between the two possible outcomes of a 

dichotomous event like signal/no-signal or 

diseased/healthy. The ROC curve is a graphical 

representation of the performance of a test or 

marker.  It is a plot of TPF (Sensitivity) against 

FPF (1-Specificity) and lies in the unit square.   

Given a marker, at each possible cutoff value, the 

TPF and FPF are calculated and plotted as the ROC 

curve.    

The ROC curve was first introduced in the 

biomedical area by Lusted (1960) for medical 

imaging applications but it became a much popular 

statistical tool after the publication of Swets and 

Pickkets (1982). Two excellent reviews of ROC 

methodology applied in the biomedical area are 

given by Zhou et al.(2002) and Pepe (2003).  

Much of the work in the area of ROC curves was 

reported by Green and Swets (1966). Metz (1978) 

stated that ROC analysis is useful to determine the 

discriminating ability of a diagnostic test.   In later 

years, eventually ROC analysis made its way into 

other areas of medicine.   

 

The prominent uses of ROC curve analysis are 

listed below. 

1) Finding optimal cutoff point of a test  

2) Evaluating the discriminatory ability of a test 

to correctly classify the subjects.   

3) Comparing the efficacy of two or more tests 

for assessing the same disease 

4) Comparing two or more observers measuring 

the same test 

 

II. THE BI-NORMAL ROC MODEL 
The bi-normal model is commonly 

adopted parametric model. It is based on the 

assumption that the test values di and hj in the D 

and H groups are normally distributed i.e di ~ N 

(µD,SD
2
) and hj ~ N(µH,SH

2
) respectively. Suppose 

X and Y denote the diagnostic marker 

measurements, called test score S, on a continuous 

scale for the D and H populations respectively such 

that X ~ N (µx, σx
2
) and Y ~ N (µy, σy

2
).  The bi-

normal model gives an expression for the TPR as a 

function of the FPR expressed in terms of 

cumulative normal probability. 

 

Theorem:  Let X ~ N (µx, σx
2
) and Y ~ N (µy, σy

2
) 

such that µx > µy.  Given the threshold c, the bi-

normal ROC model is given by 

y(x) = Φ[a + bΦ
-1

{
 
x(c)}]                                               

where Φ is the cumulative standard normal 

distribution and a, b are constants.   

 

Proof: Since X ~ N (µx, σx
2
) and Y ~ N (µy, σy

2
) 

it follows that  
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(S−µx) 

 σx
 is a standard normal deviate of X and 

(S−µy) 

 σy
  is the standard normal deviate of Y. 

According to the classifier threshold c, the FPR is a 

function of c and denoted by x(c) 

x (c)  =  P (S > cY)  

= P  
 S−µy 

 σy
>  

C−µy 

 σy
  

x (c) = P  Z >  
C−µy 

 σy
    

  

where Z is a standard normal deviate of Y. 

By symmetry property of the normal distribution, 

the FPR x(c) can be written as  

x(c)    = 1-P  Z ≤  
c−µy 

 σy
  

= P  Z ≤  
µy−c 

 σy
  

= Φ   
µy−c 

 σy
  

 x (c) = Φ (Z)   

      

where  Φ (∙) is the normal cumulative distribution 

function (cdf).     

If  Zx is the value of the Z at this cdf, then  

Zx  = Φ
-1

 [ x(C) ] 

Now      Φ
-1

[x (c)] = Zx or Z 

 Φ
-1

 [x(c)] = 
µy−c 

 σy
 

and consider  

Zx = 
µy−c 

 σy
 

µy - c = Zxσy 

 c = µy - Zx σy                                                                                              

(1)     

   

The TPR, y at the given FPR, x is denoted by y(x) 

and given by 

y (x)  =  P (S > c| X)  

= P  
 S−µx 

 σx
>  

c−µx 

 σx
  

 y (x) = P  Z >  
c−µx 

 σx
  

Due to the symmetry property of the normal 

distribution y (x) can be written as  

y (x)  = 1-P  Z ≤  
c−µx

 σx
  

= P  Z ≤  
µx−c 

 σx
  

So   y (x) = Φ   
µx−c 

 σx
                        

     

From (1.5.1),  

y (x)  = Φ   
µx−µy+ Zx∗σy

 σx
       

 = Φ  
µx−µy

σx
+   

σy

 σx
 Zx           

 y (x) = Φ  a + bZx   , where a =   
µx−µy

σx
  

and b =  
σy

 σx
 .        

Hence the ROC curve is of the form 

y(x) = Φ  a + bZx          

 Φ
-1

 [ y (x) ]      = a + b Φ
-1

[x(c)] 

 Hence the proof.   

 

The constants a and b are estimated by the 

method of maximum likelihood.    Obviously both 

a and b are non-negative since it is assumed that µx 

> µy.   

Several authors have explored interesting 

characteristics of the bi-normal model which are 

outlined below.   

 Green and Swets (1966), Metz et al. (1998) 

have shown the bi-normal model for ROC 

visually as  TPR (c) = Φ ( a + b Φ
-1

 ( FPR ( c 

))) ; c R 

 Also the bi-normality assumption implies a 

perfect linear relationship between TPR and 

FPR on deviate axes because 

           Φ
-1 

(TPR (c)) = (a + b Φ
-1

 (FPR ( c ))) ; c 

R 

 Lloyd (1998) considered a special case to 

interpret the meaning of the parameters a and b 

in the bi-normal model.  According to him If F 

= N (0, σ
2
), G = N (δ, σ

2
)   then a = 0 and b = 

1.  The intercept a is also equal to the square 

root of the Mahalonobis distance between  F 

and G distribution functions of the H and D 

populations respectively.   Hence the 

parameters a and b qualify the standardized 

separation and the ratio of standard deviation 

of the two random variables X and Y. 

 

III. PROPERTIES OF BI-NORMAL 

ROC CURVE 
Let us define the ROC in more familiar 

mathematical notation as the curve y= h(x), where 

y is the true positive rate TPR and x is the false 

positive rate FPR defined at a threshold c.   

Three main properties of the bi-normal ROC Curve 

are briefly explained below. 

 

Property-1 

y = h(x) is a monotone increasing function in the 

positive quadrant, lying between   y = 0 at x = 0 

and y = 1 at x = 1. 

Proof: The scores are arranged in such a way that 

both x (t) and y(t) increase and decrease together as 

c varies.  Moreover, limc→∞ x(c) = limc→∞ y(c) = 0 

and  limt→−∞ x(c) = limt→−∞ y c  = 1, which 

establishes the result.   

 

Property-2 

The ROC curve is unaltered if the classification 

scores undergo a strictly increasing transformation. 

Proof: Suppose that U = Φ (S) is a strictly 

increasing transformation.  Then there exists two 
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values S1 and S2 such that U1 = Φ (S1) and U2 = Φ 

(S2).     
It follows that S1 > S2 ↔ U1 > U2  

Consider the point on the ROC curve for S at 

threshold value c, and let v = Φ (c). Then it follows 

that  

P (U > v | D) = P (Φ(S) > Φ(c) | D) = P(S >c | D) 

and 

P (U > v | H) = P (Φ(S)> Φ(c) | H) = P(S > c | H) 

so that the same point exists on the ROC curve for 

U.  

The same argument holds in the reverse way and it 

hence the two curves are identical.   

 

Property 3 

The slope of the ROC at the point with threshold 

value c is is given by 

              
dy  

dx
  = 

P c D  

P c H  
 

Proof: First note that  

      y(t)= P(S > c|D) = 1- P s D ds,
t

−∞
 

So that 

 
dy  

dc
  = - P(c | D). 

Thus 

            
dy  

dx
 = 

dy  

dc
 
dc  

dx
 = -P(c |D) 

dc  

dx
 

Moreover, 

X(c) = P(S > c | N) = 1-  P s H ds
t

−∞
, 

so that 

            
dx  

dc
  = -P(c | H). 

Also  

           
dc  

dx
  = 1 dx

dc

     

Therefore  
dy  

dx
 = -P(c |D)/ -P(c | H) and the result 

follows. 

 

IV. AREA UNDER THE BI-NORMAL 

ROC CURVE 
In parametric approach, area under the bi-

normal ROC curve is the summary index of the 

performance of the diagnostic test denoted by 

AUC.  

In general AUC ranges from (0.5, 1). So 

the upper bound is 1.0, while for the case of 

random allocation AUC is the area under the 

chance diagonal so the lower bound is 0.5. AUC 

can be used to know the accuracy or efficiency of a 

test. The accuracy of a diagnostic test is the 

traditional academic point system is explained 

below. 

If AUC = 0.5 means there is no 

discrimination by the test. An area of 1 represents a 

perfect test.    
Mathematically the AUC is defined as 

AUC =  y x dx
1

0
 

Hanley and McNeil (1982), Bradley (1997), 

Farragi and Reiser (2002) have studied area under 

the bi-normal ROC curve.  

One of the very useful consequences of bi-normal 

ROC model is that its AUC can be derived very 

easily, and has a very simple form.  

If X and Y are the scores allotted to randomly and 

independently chosen individuals from D and H 

populations respectively. 

then AUC can be defined as  

  AUC = P (X > Y ) 

AUC = P (X – Y > 0) 

If X ~ N (µx, σx
2
) and Y ~ N (µy, σy

2
) then X- Y ~ N 

(µx- µy, σx
2
+ σy

2
).   Hence if Z denotes a standard 

normal random variate, 

AUC = P  Z > 0 −   
µx− µy

  σx2+ σy2
   

= 1 – Φ  
− µx+ µy

  σx2+ σy2
  

  = Φ  
µx − µy

  σx2+ σy2
   

Dividing numerator and denominator by σx, then 

AUC = Φ  
µ x− µ y

σx

  σx 2+ σy 2

 σx

  

AUC = Φ  
a

 1+b2
  

where a = 
µx− µy

σx
  and b = 

σy

σx
. 

 

Thus bi-normal AUC is simply the 

cumulative standard normal probability and can be 

easily evaluated using statistical tables or with the 

Excel function NORMSDIST(). 

 

V. CONCLUSION 
In summary, the bi-normal ROC curve 

illustrates fundamental features of the binary 

classification problem. Typically, you use a 

statistical model to generate scores for the negative 

and positive populations. The bi-normal model 

assumes that the scores are normally distributed 

and that the mean of the negative scores is less than 

the mean of the positive scores. With that 

assumption, it is easy to use the normal CDF 

function to compute the FPR and TPR for any 

value of a threshold parameter. We can graph the 

FPR and TPR as functions of the threshold 

parameter, or you can create an ROC curve, which 

is a parametric curve that displays both rates as the 

parameter varies. The bi-normal model is a useful 

theoretical model and is more applicable than you 

might think. If the variables in the classification 

problem are multivariate normal, then any linear 

classifier results in normally distributed scores. In 

addition, Krzandowski and Hand (2009, p. 34-35), 
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state that the ROC curve is unchanged by any 

monotonic increasing transformation of scores, 

which means that the bi-normal model applies to 

any set of scores that can be transformed to 

normality.  
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